
The Use of an Open-Ended Project to Improve the Student Experience in First

Year Programming
Carol Hulls, Chris Rennick, Sanjeev Bedi, Mary Robinson, William Melek

University of Waterloo

Abstract - Prior to 2010, Mechanical and Mechatronics

Engineering students at the University of Waterloo were

taught an introductory programming course using C++ in

first year. Historically, the emphasis was on learning

syntax; practising problem-solving was a distant second

priority. In addition, many students were noticeably

disengaged in lectures, and the assessments used were not

authentic.

Starting in 2010, a course project was implemented to

address these concerns. The project was immediately well

received by students, as evidenced by a noticeable number

of students going well beyond the minimum project

requirements and the variety of projects implemented.

Since the project was introduced, the students have been

able to successfully answer less structured final exam

questions. The increase in problem-solving and thinking

skills more than offsets the reduction in language-specific

facts. The logistics, challenges and resources required to

implement a project of this scope will be described.

Keywords: First Year, Open-ended, Project, Programming

1. INTRODUCTION

The curriculum for first year Mechanical and

Mechatronics engineering (MME) students at the

University of Waterloo (UW) is the typical mix of

introductory level courses. One goal for their first

programming course is to teach the specifics of how to

write code, however the most important goal is to introduce

students to problem-solving, dealing with ambiguity and

making decisions about design. As an outcome for the

course, students should be able to take a problem

description and break it down into sub-problems (to be

implemented as functions or methods), and to make simple

design decisions. In addition, because all engineering

students at UW are enrolled in a co-op program, there is

the need to give the students the knowledge and skills they

need for the workplace.

Prior to 2010, the Digital Computation (GENE 121)

course focussed on the language specifics of C++. Most of

the design decisions were made by the teaching team, as

programming assignment and exam questions carefully

laid out the details of the functions and then provided

appropriate test cases to be used to test the code. The

course was content heavy; students would refer to it as “the

C++ course” because syntax was seen as most important.

Mechatronics engineering (MTE) students found the

course dull but could see the importance of learning the

material; mechanical engineering (ME) students frequently

asked, “Why are we taking this course?” Exit surveys of

fourth-year students often identified it as a problem course.

Failure rates, particularly for the ME students, were

generally trending upwards. There was a large mismatch

between the goals of the course, and how it was delivered

and assessed.

In response to these issues, in 2009, the content for the

ME offering of the course was changed. An informal

survey of the syllabi for other introductory programming

courses showed that Queen’s University was using RobotC

and the LEGO Mindstorms NXT (NXT) as a platform for

its course [1] and that students from all disciplines were

finding this programming course interesting and engaging.

The GENE 121 teaching team also felt that there was value

in ME students learning about programming software to

work with sensors and motors. The draft plan was to teach

RobotC as a supplement to C++ with the goal of having the

students use it as an interesting platform to practice coding

decisions, loops, and functions. Over the course of the

planning semester, the idea of a course project was

introduced. The project was later extended to MTE

students’ introductory programming course, which

allowed integration between the programming and

mechatronics concepts courses.

The development of the course project, including

changes made to the course content and delivery, are

described in the next two sections. Students were surveyed

about the project at the end of the term and upper-year

students (third and fourth year) have expressed their

opinions with regards to the project in focus groups. The

results, discussed in Section 4, show that the project has

been very successful. Finally, a discussion of the

challenges and resources required in offering a project of

this nature are given.

2. INITIAL ACTIVITY

The redesigned GENE 121 course launched in January

of 2010 to a class of approximately 135 ME students. The

redesigned course covered typical C++ topics such as

selection statements, loops and arrays for the first 6 weeks

of the 12-week term; RobotC was started in approximately

week 7. Four weeks of RobotC assignments were

completed with the “standard robot configuration” in the

lab. This robot had a two motor tank-drive with an

ultrasonic sensor pointed forwards and a touch sensor

acting as a front bumper, as shown in Figure 1. After four

weeks of using the NXT robots in the lab to solve well-

defined problems, the students signed out a robot to start

working on their group project.

Figure 1 Standard robot configuration

Two term assignments were removed from the course to

allow students time in the lab to work on their final project.

In the first four iterations of the activity (winter and spring

2010 and 2011), students, working in teams of 3-4 students,

were provided with two options: to construct and program

one of the three pre-defined project ideas (a Roomba

analog, an alarm clock which could hide from the user or a

maze-solving robot), or to define their own project. The

students had to submit their proposed idea before they were

allowed to sign out one of the LEGO parts kits. In the first

year, with no previous precedence for what was possible,

most students opted to build a maze solving robot.

Students were told repeatedly that they should not spend a

significant amount of their own time on the project (i.e.

outside of lab time), and were aware that the project only

carried a 3% weighting (equivalent to two assignments) in

their final course grade. They were also told that any

mechanical changes should be kept to a minimum, as they

would not be provided with any marks for mechanical

design/construction. The minimum software requirements

for the project were set at an easily achievable level as the

teaching team were unsure as to whether the activity would

be a success or not. Table 1 gives the initial project

requirements.

The deliverables for the project were a list of tasks that

the robot would perform, which was used to assess the

success of their project demonstration, a demonstration,

and a final report. The demonstrations were done in front

of their classmates and the teaching team in their final lab

session of the term. A few days after their demo, a short

(2-3 page) report was due summing up what was

accomplished by the team, including a copy of their project

software.

Table 1 Initial project software requirements

The use of all three motors, one of which should have

controlled movement

The use of the Ultrasonic Sensor

The use of timers, the motor encoders, or both

The use of at least one button or touch sensor

Repetition (i.e. loops)

Decisions (i.e. if statements)

2 non-trivial functions with appropriate parameter

passing

Their software was assessed by the teaching team for

matching project requirements, meeting course

programming style, and for showing appropriate software

design. The enthusiasm of the entire class of students was

highly evident on final project demo day, buoying the

teaching team’s confidence that the project was the right

choice for the course. A small number of groups also

decided to ignore the project suggestions and develop their

own idea. One of the memorable projects was a robot

“bartender” which used a scissor lift to raise drinks to the

user.

After the first semester of the course project, the

teaching team noticed that the long break from C++ at the

end of the term (two weeks with no assignments, plus

typically a week between end of classes and the final exam)

was detrimental to student success on the final exam, so for

spring 2010 the project was moved forward by one week

to allow a C++ assignment in the final week of term. The

only other change for the spring implementation of the

course was that a different professor taught the course. In

both terms, the same three full-time staff members were

assigned to the course (for approximately 8 hours a week,

each) and handled the majority of the course deliverable

grading. Spring 2010 showed an increase in original

project ideas, though maze solving robots were still over-

represented among the course project ideas. This is likely

because the task is easily understood by students and very

few mechanical changes were needed as the sensors were

already set up quite well to solve this problem. The

weighting of the course project in spring was increased to

5% after the initial success of the activity, and to match the

reality that students were spending more time on the

project than the teaching team intended.

Figure 2 Autonomous parallel parking vehicle (2010)

The project carried on with only minor tweaking in the

winter and spring 2011 semesters. The list of project ideas

was expanded to include a number of original student ideas

from 2010 which proved successful. Figure 2 above shows

the first implementation of a project which could

autonomously parallel park a vehicle. These new ideas

would typically require a significant alteration of the

physical robot. Student enthusiasm remained very high

throughout the initial four offerings of the course project,

and the number of projects where students went above and

beyond what was required of them rapidly increased. By

this point, the project implementation, from a teaching

perspective, was quite mature and required only minor

alterations from term to term. The length of the report was

increased as the students were required to explain in more

detail the design decisions that were made throughout their

project.

3. EXPANSION TO MECHATRONICS

In fall 2011, the course instructors saw promise in the

project to integrate concepts between GENE 121 and the

Introduction to Mechatronics course MTE 100, so GENE

121 for MTE students was rearranged to make room for

RobotC and the final NXT project. Like with the ME

course, two assignments were removed from the course,

along with approximately three lectures to be able to teach

RobotC to the students. This necessitated the removal of

some advanced C++ topics like vectors and operator

overloading, and a slight re-design of their follow-on

programming course (taken in their second semester) to

reflect the change in student knowledge level. MTE 100

teaches the principles of the design cycle, practicing

communication (e.g. verbal, written and CAD/drafting)

along with a number of other topics. The hope was that the

course project would give the students a meaningful

subject for their reports and practice the stages of the

design cycle. To meet this goal, the project timeline,

deliverables and requirements were all expanded. The

minimum project requirements are shown in Table 2.

The course project was tied to the concepts taught in

MTE 100 in multiple places throughout the term. The first

major deliverable of the project was a new Design Report.

This three-page report had to include a description of their

project, a discussion of their constraints and criteria, hand

sketches of mechanical design alternatives, and finally an

application of their criteria to choose the preferred solution.

The content of this report was marked for MTE 100 and

was a milestone for GENE 121. This design report was due

in week nine of the semester, expanding the timeline of the

project to four weeks from the original two. As with the

ME version of the course, the students demonstrated their

working projects in a lab session in week 11, and the now

longer 8-12 page final report was due a few days later (the

report was made longer to reflect the mechanical design

work required).

Table 2 Fall 2011/2012 project requirements

A mechanical re-design of some, or all of the robot

and/or an additional mechanical component

The use of three motors, one with controlled movement

The use of at least three different sensors (which can

include the motor encoders)

The use of timers

Repetition and Decisions (i.e. loops and ifs)

4 non-trivial functions with appropriate parameter

passing

The MTE students were extremely enthusiastic about

the project, almost universally coming up with their own

project ideas instead of using one of our alternatives. By

this point, the list of possible project ideas had been

reduced to simply titles with no description of what the

project would or could look like.

The success of this expanded project gave us the

confidence to run a similar, expanded version with the ME

students in winter and spring 2012. Some of the

deliverables with strong ties to MTE 100 (like the hand

sketching) were removed from the project in favor of

software related things like a program flowchart. This term

marks the first time that mechanical design was worth any

marks in the project for the ME students (it was worth 2/20

marks). Mechanical design was marked for mechanical

efficiency and appropriateness to the overall project. This

expanded version of the project has continued to be run

(with minor changes) up to and including the fall 2014

term.

Figure 3 "Go Fish" card dealing robot

Even as the project requirements continued to rise,

students still routinely went above and beyond to develop

extremely sophisticated projects including robots which

could solve Rubik’s cubes, play “Go Fish” as shown in

Figure 3, CNC milling machines, and scanners and

plotters. By fall 2014 the project requirements were

significantly higher than in the initial 2010 iteration of the

project. These have been summarized in Table 3 below.

Table 3 Fall 2014 project requirements

A mechanical re-design of some, or all of the robot

and/or an additional mechanical component

The use of 3 motors, one with controlled movement

The use of at least 4 different sensors which can include

communication to a laptop, or an additional NXT robot

The use of timers

Repetition and Decisions (i.e. loops and ifs)

6 non-trivial functions (4 for groups of 3 students) with

appropriate parameter passing. Each group member

must write at least one function. At least one function

must return something and at least one must have

parameters.

4. IMPACT ON STUDENT LEARNING

4.1 Survey Results

An online, voluntary student survey was conducted for

several offerings of the course at the end of the term, asking

students to reflect on the project. MTE students’ comments

were then cross-referenced with their course grades. For

the MTE students, approximately 57% in 2014 provided

feedback, while in 2013 the participation rate was

approximately 41%. The class was well represented,

although slightly more high achieving students and slightly

fewer average students completed the survey. Although

the survey for the ME students was anonymous, the

participation rate was lower with about one third of

students participating in each term. The lower

participation rate reflects the entirely voluntary nature of

the survey. Table 4, below, shows student responses on

level of interest for MTE students in both 2013 and 2014.

Table 4 Level of interest (MTE)

 2013 2014

Disliked the task 0 1

Rather have done something else 2 1

Indifferent 2 0

It was interesting 11 24

It was very interesting 47 86

 When asked about how the project impacted their

confidence level, a large percentage of students in MTE

stated that they were more confident programmers after

completing the project (Table 5). While the percentage is

lower for students who did not perform as well in the

course, this seems to be largely the result of letting others

in the group handle the programming tasks. The results are

not as clear for the ME students, as approximately half of

the students felt they were stronger programmers as a result

of the project, while many of the remaining students were

uncertain (Table 6). Some of the uncertainty is likely due

to students being uncomfortable with the subject (many

students choose ME over MTE due to a dislike or fear of

programming).

Table 5 More Confident after project (MTE 2014)

 Quartile Overall

low high

No I didn’t program the robot 4 0 5

No, it wasn’t useful 1 0 5

Maybe 2 3 14

Yes, a little 13 9 54

Yes, definitely 3 13 34

Table 6 Stronger programmer after project (ME, 2014)

 Winter Spring

Yes, definitely 9 7

Yes, I think so 11 9

Maybe 10 8

No 10 3

 Almost all of the students, from weaker students to the

stronger ones, found the project interesting. In

conversations with students, the teaching team has noted

that those students who do not find the project interesting

are often the ones who are uncertain as to whether

engineering, or more specifically MTE or ME, was a good

choice for them. In fact, a discussion of the project can

often be the starting point to explore a student’s choice of

program in the face of difficulties.

Most of the students found the project to be useful,

particularly the MTE students, as it encompasses, in a

limited way, many of the areas that they will study as an

undergraduate student. For these students, the project has

always involved both a software and a mechanical design,

so its focus has been broader compared to the ME students,

who ironically, are given a project that focuses almost

exclusively on the software design. ME students do think

that there should be an increase in the mechanical design

part of the project, and this is being addressed in a new

version of the programming course that debuts in 2015.

4.2 Class of 2015 Focus Group Results

The MTE graduating class of 2015 was surveyed in their

last term of study. In 2010, in their first term on campus,

they were given an Arduino based platform that had the

microcontroller board attached to a fixed set of crawler

tracks. A reflectance sensor allowed students to be able to

perform line following. The project was memorable to the

students for two reasons: the unreliability of the platform,

and that they were given the small freedom to design their

own bumper mechanism. Difficulties with the mechanical

construction meant that the wheels literally fell off some of

the robots. Incomplete documentation meant that the

motor operation was poorly understood and the software to

run the motors was poorly written. While the teaching

team had forgotten the bumpers, the students still

remembered having to construct them to form a touch

sensor, almost four years later. They commented that they

wished the rest of the project had been more open-ended

but that the project did build some confidence in their

abilities. Still, while they clearly felt an open-ended

project in their first term had been a good experience, they

did worry that it would be too much of a challenge to make

sure that students were successful. Having not experienced

the NXT project themselves, it was interesting to note their

uncertainty with regards to the capabilities of first year

students.

Finally, when asked, most of the students did not recall

some of the specific details of C++, for example vectors

and operator overloading, that were covered during their

term. They felt that the language specifics could easily be

picked up after the course, or that students could be offered

this information online as a supplement for any who

wished to have more detail. This finding reinforced the

decision to cut some of the language-specific details in

favour of introducing RobotC and the open-ended project.

4.3 Class of 2016 Focus Group Results

The MTE students who started in 2011, and who are

now at the end of their third year, were offered the first

version of the NXT project that involved both the design

and implementation of software to control the robot, and

the design and implementation of a mechanical design as

described previously. This group of students loved the

freedom of the open-ended project. An earlier exercise in

the term, working with a fuel cell car was not as well liked

because it was too constrained [2]. For the NXT project,

they liked that they were able to get something working to

show to others in the class at the end of term [3]. In

addition, some students mentioned that working with the

sensors and motors was a good introduction to

mechatronics systems. One complaint that was echoed by

many of the students was that while the project in their first

semester had been a good experience, there was a lack of

open-ended projects until their sixth semester (i.e. second

half of third year). They also complained about exercises

in the interim semesters that were “spoon fed” to them.

In their sixth semester at UW, they were again being

offered an open-ended project. Many students found this

challenging because they stated that they wish there were

some sort of transition between the NXT project which was

constrained in terms of the equipment used (which was

reliable and easily connected) to the challenges of their

much less constrained upper-year project. They felt that

sometime in their second year would be an ideal time to

offer an open-ended project that would allow students to

transition to the more challenging requirements. They did

not suggest, however, that the third-year project should be

made less challenging.

When asked, the third-year students did not feel that

they had lacked any C++ specifics when they were taught

the course. After being prompted further with regards to

specific topics, which corresponded to the ones that had

been removed to make room for the project, many stated

that they had not needed the knowledge, and amongst those

that had used this knowledge they had been comfortable

with learning it on their own.

The-third year students unanimously agreed that the

project gave them something tangible to put on their

resume, and talk about with prospective employers, while

searching for their first co-op positions.

Overall, the students found the project to be a positive

experience that contributed to their ability to handle

uncertainty, and provided them with an enjoyable means of

practising programming.

4.4 Instructor Perspective

The course redesign to include the project has been very

successful from the instructor perspective as well. During

the term, students are challenged to think of how to break

down the larger task that they want to accomplish into sub-

tasks. This freedom means that they have to make

judgement calls as to what a function should accomplish,

and what information should be passed to a function and

returned from it. How to handle debugging when

integrating the system, both for the software and for the

NXT components, becomes a real challenge to the students

rather than something that is mentioned in lectures and

forgotten soon after. On the final exam, the largest

question has changed from being very pre-scripted to being

open-ended. Students are given a small task, and told to

state their assumptions, state any potential issues with

having the robot solve the given task, and then to code non-

trivial functions and the main program. For example, in

fall 2014, the students were given a description as to how

the NXT robot might be used, with some modification, to

vacuum leaves from the drains on streets, and then they

were to write the software to accomplish this task. The

course is now meeting the objective of including problem-

solving and decision making, and more importantly, it is

part of the assessment.

A large, loosely defined project that spans multiple

weeks serves as an introduction to the types of projects that

students will encounter on their four-month work terms. In

addition, the students have to work in teams to complete a

task by a specific deadline, where the steps are not laid out

for them ahead of time. Issues such as how to handle

testing of components and integrating the work of other

team members are highlighted for the students, primarily

through the realization that they did not take into account

these issues and that it would have been better to do so, and

to do so early.

While supporting the project is challenging, and leads to

a very intense two to three weeks, the time period is also

marked by high student-instructor interaction and

interesting discussions. Project demo day is the highlight

of the term for the teaching team.

5. CHALLENGES AND RESOURCES

The project is not without its difficulties. The first major

challenge is one of student and teaching team workload. A

number of factors are present here: the scope of the student

project(s); the level of performance expectation of the final

product; the support required from the teaching team

members to give advice on hardware and software design

issues, troubleshooting and debugging; and finally the

issue of writing (for the students) and grading (for the

teaching team) the project deliverables. The second major

challenge is true of all group based projects at an

undergraduate level: assessing the individual contribution

of each team member versus what the team as a whole has

completed.

Students in their first year of engineering are generally

not capable of setting an appropriate scope for their project

without some level of teaching team intervention. At the

beginning of our project deployment, before expertise had

been built in the teaching team and in the student body (i.e.

through information passed on by upper-year students), the

projects were much simpler. Through a combination of the

teaching team building their knowledge base of what is

possible, and through the competitive nature of the students

wanting to “one-up” the previous class(es), the complexity

has increased. This growth has been encouraged, and

requirements have been increased to match. The scope of

the students’ project is investigated at multiple points

throughout the term by the teaching team, and any issues

are addressed as soon as possible. The first layer of this

check is performed when the students submit their initial

one paragraph description of their project. At this level it

is possible to catch problematic and/or obviously unsafe

projects like “We would like to build a blimp which will

require 2m3 of helium to fly”. Once the initial idea has

been vetted by the teaching team, further “sanity checks”

of the project are performed with each project deliverable.

The students have always been allowed to revise their

project idea right up to their final demonstration day. One

other method of helping students scope their project is to

allow them to use “off-the-shelf” software or hardware,

developed by others, within their project. Project

requirements are applied only to the work done by the

students’ themselves in these cases.

To further aid the students in setting an appropriate

project, the teaching team has always told a consistent

message about performance expectations of their final

product. Because this is a first-year project, and in many

cases this is the first complete product that the students

have designed, built and tested themselves, the teaching

team allows students to “nudge” their projects where

needed. The students are not expected to have in-depth

signal conditioning on their sensor inputs, for example.

For their final demonstration, the project does not need to

work the first time, nor does it need to show all aspects of

its performance in one run.

The nature of a student-driven, open-ended project

means that the teaching team needs to be comfortable with

ambiguity, with dealing with a wide spectrum of issues and

questions ranging from hardware design decisions to

control systems questions to programming problems, and

be able to debug issues in all these areas. The teaching

team for this project is made up mostly of full-time staff

members, with an occasional undergraduate TA mixed in

when the class size is particularly large. This consistent set

of people has meant that the teaching team has been able to

build on past experiences to better judge when they should

be intervening with a student group, and to make

suggestions as to what is possible. Without consistency in

the teaching team make-up, some method of passing this

information from term to term would be required.

The teaching team have used two methods to control the

amount of time students will invest in the written project

deliverables. The first is a hard page limit on both the

introductory design report and the final report. The second

method is using the concept of a telescoping report [2].

Since the introduction of the initial design report in fall

2011, approximately the first third of the final report was

the content of their initial report. The students are then able

to incorporate feedback and lessons learned throughout the

project, to improve these sections from their initial

submission without having to write them from scratch for

the final report.

Like all team based projects, it is difficult to assess the

contributions to the project made by specific individuals.

One step we have taken towards this end is to require each

student to write one function, and the author of each

function needs to be labelled in their final code submission.

While it would be an academic offense for the group to be

dishonest about this, it is relatively difficult to prove any

dishonesty. The course compensates by requiring that

students obtain a 40% on their final exam before their

midterm, project and assignment grades count towards

their final mark.

5.1 Resources

The resources used to run this project for class sizes of

between 100 and 200 students are summarized in Table 7

below. Attrition for the major, costly components has been

quite low over the last five years. There have been few

hardware failures: we are still using the original

rechargeable battery packs, for example. We are quite

careful when students are returning the kits to us to count

the major components and make sure they are all present.

Otherwise, students must reimburse us for the missing

parts. The small pieces, on the other hand, are nearly

impossible to count and track so losses are expected.

Table 7 Required Resources

Ongoing Resources One-Time Purchases

RobotC annual license 1 LEGO Mindstorms NXT

set for every 3-4 students

1 faculty member Optional (but

recommended): 1 additional

set of LEGO construction

materials for every 3-4

students

2-4 technical staff, 8-

12 hrs/wk.

0-2 undergraduate TAs

Optional: Additional 3rd

party sensors (e.g. HiTechnic

gyro sensor) [4]
In fall terms: 3-5

undergraduate TAs

with MTE 100

In addition to the physical and personnel resources

required, the public demonstration day has also required a

lab large enough to hold the entire class (usually just half

the class in the case of ME) and all of their projects.

Implementing the final demo day in this format has added

to the success of the project over the years as the students

routinely have not seen what their classmates have been

working on in advance of this day. While it would be

possible to implement the demo day on a smaller scale,

especially if a large space were not available, it would

weaken the impact of the project for the students [3] [5].

6. CONCLUSION

The increase in student enthusiasm, and the

corresponding increase in the student perception of

programming was worth all the effort to incorporate the

final project into GENE 121. From our focus group

sessions with upper-year students, it was clear that the

content that was removed to make space for the project

was not missed. Also from these sessions, students who

did not complete the project noticed an absence of open-

ended problems in their early years in the program.

Having students face and deal with ambiguity, test

their own systems, and communicate their ideas in a

classroom setting can be quite challenging. The course

project, as it has evolved over the years, has addressed

these quite well, if only at an introductory level.

The project will continue to evolve and be delivered to

students in Mechanical and Mechatronics Engineering in

their first programming courses. Data will continue to be

collected to measure the efficacy of this project.

ACKNOWLEDGEMENTS

Thank you to the Department of Mechanical and

Mechatronics Engineering, and specifically the Chairs Jan

Huisson and Pearl Sullivan for supporting the project

continuously over the last five years.

The in-class support provided by June Lowe, Fiona

Yiu, David Lau and Michael Stachowsky was invaluable.

The projects would not be what they are now without

their help.

Thank you to the many WEEF TAs who have aided

students in completing their projects.

Thank you to WEEF for their support of the project.

REFERENCES

[1] M. Greenspan, K. Rudie and S. Simmons,

"Introducing Computer Programming with Lego

Robots," in Proceedings of the 2010 Canadian

Engineering Education Association (CEEA)

Conference, Kingston, 2010.

[2] C. Hulls, C. Rennick, M. Robinson, W. Melek and S.

Bedi, "Integrative Activities for First-Year

Engineering Students – Fuel Cell Cars as a Linking

Project Between Chemistry, Mechatronics Concepts

and Programming," in Canadian Engineering

Education Association Conference, Canmore, 2014.

[3] G. Kuh, High-Impact Educational Practices: What

They Are, Who Has Access to Them, and Why They

Matter, Washington: AAC&U, 2008.

[4] "HiTechnic," [Online]. Available:

www.hitechnic.com. [Accessed 21 April 2015].

[5] G. Kuh and K. O'Donnell, Ensuring Quality &

Taking High-Impact Practices to Scale, AAC&U,

2013.

