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Abstract: This paper presents an overview of design 
patterns for teaching an undergraduate course on 
interfacing of microcontrollers, microprocessors and 
microcomputers for real-time systems. Such design patterns 
are useful because the course must cover a wide range of 
topics for both wired and wireless systems, and is intended 
for a variety of microcontrollers. Without the patterns, 
teaching all the material from ground up might not be 
feasible. 
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1. INTRODUCTION 
 
1.1 Challenges with Teaching Interfacing 
 
 This paper presents a few design patterns for teaching 
an undergraduate course on interfacing of microcontrollers, 
microprocessors and microcomputers for real-time systems 
[20], [21]. The course is not based on one microcontroller 
(usually taught prior to a course on interfacing and 
embedded systems), but on a wider range of 
microcontrollers and microprocessors. The course is also 
intended to generalize the architectures and organizations in 
order to prepare the students for new technologies. 
Teaching such a course material from ground up is not 
feasible because of the extensive detail required. 
 The difficulty of teaching a course in this area stems 
from the diversity of topics that must be covered. Figure 1 
shows the granularity of topics included in the course (only 
the two top levels of topics are shown). 
 
1.2 Course Scope 
 
 The five top-level topic modules include: (i) an 
introduction to real-time computing, architectures, 
processors, and technologies, (ii) the architectures of the 
main microcontrollers and microprocessors, as well as of 
internal, external, peripheral and system buses, (iii) digital 
input/output (I/O) synchronization (e.g., different classes 
of polling and interrupts, direct memory access (DMA), 

context switching, and the major buffering techniques for 
isolation of input from the output, and for de-
synchronization between the input and output), (iv) digital-
to-analog (D/A), analog-to-digital (A/D), and digital-to-
digital (D/D) signal conversions, as well as the core types 
of converters (e.g., parallel flash, serial counting (single 
ramp), tracking, successive approximation (SA), integrating 
(dual slope, quad slope), voltage-to-frequency (V/F)-based 
converters, and delta-sigma converters [22]), and finally (v) 

 
 

Fig. 1 Elements of an interfacing course. 
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interfacing aspects in data communications (e.g., major 
wired (baseband) and wireless (passband) data 
communications protocols, data encoding, signal 
conditioning, forward error detection and correction). 
 The D/D1-3 digital-to-digital signal conversion refers 
to source coding, security coding, and channel coding, 
while D/DA refers to line coding. Source coding 
(compression) changes the original digital bit stream to 
another more compact bit stream by removing redundancy 
from the original data. This increases data throughput by 
transmitting or storing the relevant information only. On 
the other hand, compression makes the data stream more 
vulnerable to errors on the channel or in storage. Security 
coding refers to protecting data against their inappropriate 
use, and is necessary in all digital systems now [19]. 
 As an integral part of interfacing, the course also 
presents some aspects of channel coding with its error 
detection and correction [18]. It distinguishes between 
error detection and correction techniques that are suitable 
for real-time systems. It covers error correction techniques 
that use retransmission (the automatic retransmission 
request, ARQ) and forward error correction for real-time 
data communications such as the Hamming family of codes 
for memoryless channels. The benefits of channel coding 
come at a price: the error protection requires some extra 
redundancy in the original bit stream, thus reducing its 
throughput. To cover the topics properly in the course, the 
D/D conversions are presented using design patterns. 
 Finally, line coding translates the data bit stream into 
another bit stream in order to achieve several objectives: (i) 
to reduce the DC component of the signal due to long runs 
of 1s (or 0s) in order to reduce line wandering, (ii) to 
embed the data clock into the data bits, thus achieving self-
clocking codes, and (iii) to make the bit stream differential, 
thus making it independent of wire polarity [17]. The 
benefits of line coding also come at a price: the bandwidth 
of the signal may be increased, thus affecting its power to 
maintain the signal to noise ratio and error protection. This 
paper presents an example of line coding design patterns in 
Sec. 3. 
 
1.3 Course Lab Structure 
 
 The previous implementations of our lab experiments 
in this course utilized various microprocessors and 
microcontrollers, including the 6800, 68000, 6805, HC08, 
and the HC11, all in printed-circuit boards designed and 
implemented by us in house. To keep up with newer 
technologies and architectures, a new set of labs based on 
the HCS12 microcontroller development board has been 
implemented [23]. The new laboratories have been 
developed and presented to the students twice, followed by 
numerous improvements and corrections of the lab manual. 
A new tutorial on the HCS12 has also been developed. 
Selection of topics in the tutorial, their presentation and 
structure are all quite novel, and should be helpful in 

reinforcing the knowledge of this important pipelined 
microcontroller that is compatible with many legacy 
microprocessors and microcontrollers. 
 

2. INTRODUCTION TO DESIGN PATTERNS 
 
2.1 What is a Pattern? 
 
 A pattern is a regularity in either the physical, or man-
made, or abstract world as discerned by our senses or by 
mathematical analysis. The patterns often include 
symmetry, spirals (often logarithmic), trees, waves, bubbles, 
stripes, fractures. Those patterns can be either static, or 
dynamic, or dynamical, and originate from deterministic or 
stochastic processes. Many of the rich patterns are self-
affine (fractal and multifractal) [37], [26], [28]. 
 
Discovering patterns and their dynamics in both nature and 
the abstract world is an important part of life. It is 
important in mathematics (transformations and modelling) 
[1], [31], [35], [34], physics (growth, percolation, materials) 
[36], [5], chemistry (pattern in space such as symmetry in a 
molecule affecting its infrared spectrum) [3], geology and 
geophysics [37], engineering (statics and dynamics) [12], 
[4], stocks (trends) [33], biology and medicine (patterns of 
health) [38], [11], [39], and other areas. 
 
2.2 What is a Design Pattern? 
 
 Design patterns are intended to capture the best 
practices in a specific domain. They are formally-
documented solutions to design problems, often found in 
real-world applications, and presented in a compact form 
that can be easily communicated to those who need the 
knowledge. It is a description or a template for how to 
solve a problem that can be used in many different 
situations. “Patterns are about reusable designs and 
interactions of objects. A pattern documents a recurring 
problem–solution pairing within a given context. A pattern, 
however, is more than either just the problem or just the 
solution structure: it includes both the problem and the 
solution, along with the rationale that binds them together” 
[10]. 
 The term "design pattern" is usually attributed to 
Christopher Alexander and his colleagues in the context of 
architecture, urban design, and community liveability, 
where it signifies a way of capturing and communicating 
critical design ideas [2]. 
 A design pattern has the following attributes: 
(i) It must explain why a particular situation causes 

problems, and why the proposed solution is considered 
a good one; 

(ii) It does not provide a single solution to a problem, but 
proposes a guide and a stencil toward a best design for 
a particular application under specific constraints; 
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(iii) It must also explain the range of situations in which a 
pattern can be used (i.e., the context); and 

(iv) Patterns enhance the different perspectives on a 
solution [9] 

2.3 What is a Design Pattern Language? 
 
 A pattern language is a set of design patterns that work 
together to generate complex behaviour and complex 
artefacts, while each pattern within the language is simple 
in itself. Patterns in isolation provide only incremental 
improvements to software systems, processes, 
organizations, and design. A pattern language may provide 
a more fundamental and more lasting improvement. 
 
2.4 Design Patterns In Different Disciplines 
 
Patterns in Software Engineering 
 In software engineering, design patterns are very 
important and have been used for a long time (e.g., Gamma 
and colleagues [15] who were inspired by Alexander’s 
work). Design patterns can speed up the development 
process by providing tested, proven development 
paradigms. 
 
Patterns in Human-Machine Interaction (HMI) 
 Design patterns in the human-computer interaction 
(HCI) are often used for developing user interfaces because 
they render the communication among stakeholders 
efficient, and allow for quicker design of the interfaces [13], 
[30]. 
 
Collaboration patterns 
 Patterns in collaborative working environments (CWE) 
have also been defined at different levels of granularity and 
in relation to different application contexts [32]. They are 
intended to enhance collaboration and its impact on 
projects. 
 
Patterns in Education 
 These examples of patterns are closely related to the 
design patterns discussed in this paper. Pedagogical 
patterns have been developed to capture expert knowledge 
(the essence) of the practice of teaching and learning [7], 
[6]. Recurring teaching problems include: choosing and 
sequencing materials, evaluating students, motivating 
students, and instilling life-long learning. Every new 
instructor can benefit from a senior faculty member and 
from a pattern language. Design patterns have been 
developed for good seminars and their delivery [14]. 
Lecture design patterns have been described to increase the 
efficiency of this form of education through a foundation of 
good lectures [29]. Experiential learning design patterns 
have also been developed [8]. Another set of patterns has 

been developed to gain different perspectives in the class 
[9]. 
 

3. AN EXAMPLE OF INTERFACING PATTERNS 
 
 This example is taken from the data communications 
module (Fig. 1) which is very rich in content and includes: 
(i) source coding, (ii) security coding, (iii) channel coding, 
(iv) line coding, and (v) digital modulation for wireless. 
 
3.1 Scope of Line-Coding in the Course 
 
 The source, security and channel coding stages are 
required in preparing data for storage and/or transmission, 
but are not sufficient to transmit data because the bits are 
still in the internal representation of the computing node. 
Line coding is concerned with translating the abstract state 
representations (binary or non-binary symbols) into a 
physical digital temporal form (a boxcar signal) for 
transmission over digital communications channels, either 
wired (baseband) or wireless (passband). 
 The objectives of the line coding are: (i) the maximum 
data rate with the smallest signal rate, (ii) the smallest 
bandwidth, (iii) no DC component, (iv) self-
synchronization, (v) immunity to noise and interference, 
and (vi) built-in error detection. Those objectives are often 
conflicting. 
 
3.2 Types of  Line Codes 
 
 Line coding includes various types of codes, as shown 
in Fig. 2. 
 

 
 

Fig. 2 Types of line codes. (After [Kins15b, p. 16]) 
 
Unipolar Codes: All the signal levels s = {LO,HI) for all 
the symbols in the message alphabet (e.g., m = {0,1)) are 
either positive or negative, not both. Recall that an alphabet 
is a set of non-repeating symbols. 
 
Polar Codes: Signal levels for the message symbols are 
both positive and negative (at different times). 
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Bipolar Codes: Signal levels for a single message symbol 
alternates sign (at different times) while the other symbol is 
zero. Example: AMI. 
 
Multilevel Codes (mBnL): This line code can transmit one 
m-bit message symbol at a time. The m-bit symbol message 
alphabet is m = {m1,m2, ), with cardinality M. For 
example, if each message symbol has m = 3 bits, M = 2m = 
8. To transmit each symbol in one signal symbol slot, the 
signal symbol would have to have L = 8 levels. This code 
would be denoted as (8B1O) where O stands for “octal.” 
However, detecting eight signal levels is not easy in the 
presence of noise. 
  In order to reduce the number of signal levels to L =  4, 
we must split the message symbol cell into two slots. Since 
both slots have the same number of signal symbols, the 
total number of signal symbols is N = Ln = 42 = 16. Since 
we need only 8 distinct signals, the remaining 8 can serve 
as alternatives for code balancing, or as error detection. 
This code would be denoted as (3B2Q) where Q stands for 
“quad.” 
 We might further simplify the decoding by reducing 
the number of signal levels to three (L = 3). Since the 
number of distinct signals in the two slots is N = Ln = 32 = 
9, we can eliminate the signal condition 00, and still have 
the required 8 signal symbols to transmit the eight message 
symbols. The code is denoted by (3B2T) where T stands for 
“ternary.” 
 All these schemes belong to a broad class of pulse 
amplitude modulation (PAM) signal encoding. Each signal 
symbol requires a period of time (symbol cell), Ts, to be 
formed for transmission. Thus, the signalling rate (the 
number of signal changes per unit of time expressed in 
baud) is fs = 1/Ts. If the symbol is a bit, then the signalling 
rate is the same as bit rate in bits per second, bps. 
 
3.3 Basic Line-Coding Design Patterns 
 
 The course provides an explanation of the codes 
structure, with emphasis on the reasons for each new code. 
For example, the minimization of the DC component is 
demonstrated through the changes from the unipolar non-
return-to-zero level (NRZ-L) signal to the polar NRZ-L, 
then from the unipolar return-to-zero (RZ) to polar RZ and 
to the bipolar alternate-mark-inversion (AMI) signal. This 
is followed by demonstration of why embedding a data 
clock in the data stream is necessary, and what the 
conditions for self-clocking codes are, with examples of the 
construction of the pulse-width modulation (PCM), double-
frequency code (DFC), Manchester biphase, and the code-
mark-inversion (CMI). The clock recovery techniques are 
also discussed (e.g., the phase-locked loop, PLL, and the 
maximum lakelihood estimation, MLE). The conditions for 
polarity independence are also discussed, followed by the 
construction of a Manchester differential code and its 

derivatives. Code scrambling is discussed, including the 
bipolar with 8-zero substitution (B8ZS) and the high-
density bipolar 3 (HDB3) as a modification of the AMI 
code. 
 Notice that all the codes were explained using a 
corresponding design pattern. The collection of the design 
patterns constituted a design-pattern language (DPL) for the 
Line codes. Within the language, the principle of code 
construction evolved naturally. For example, the binary 
signalling scheme transmits a message (a binary bit stream) 
by converting it into a suitable analog boxcar signal form 
such as the Manchester differential. The message is 
constructed from an alphabet consisting of two symbols 
m = {0,1}. The signal is also constructed from an alphabet 
consisting of two symbols s = {s1,s2} = {LO, HI}, where 
LO may be either 0, or A, or A/2 (denoted as LO = {0 
| A | A/2} where the vertical bar denotes OR), and HI 
= {A | A/2}. For example, the NRZ code is taken from {0, 
A}, and Manchester from {–A/2, A/2}. The amplitude, A, 
can be either 15 volts (V), 5 V, 3.3 V or some other value. 
In the context of this design pattern language, we can ask if 
there is any other code to perform better than the binary 
code? 
 
3.4 The Multilevel mBnL Design Patterns 
 
 The multilevel signalling (mBnL) is introduced by 
rephrasing the NRZ signal as a two-level PAM (2PAM) 
and its equivalent 1-bit message symbol and 1-bit binary 
signal symbol (1B1B), as shown in Fig. 3. 
 

 
 

Fig. 3 NRZ constellation. (After [Kins15b, p. 35]) 
 
 The 4PAM (2B1Q) signal is shown in Fig. 4. The 
features of the new code are discussed, with emphasis on its 
inability to control the DC component, even though it has 
some self-clocking capabilities. What should be done in 
order to achieve a better self-clocking and DC control? 
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Fig. 4 2B1Q line code. (After [Kins15b, p. 36]) 
 
 This analysis resulted in a second rephrasing of the RZ 
code: The bit cell for a 1 in the RZ code can be considered 
as having two time slots: the first has a HI, and the second 
has a LO. Thus, the signal symbol for a 1 is (HI,LO), with 
the transition in the middle of the bit cell, while the signal 
symbol for a 0 is (LO,LO), as shown in Fig 5. 
 

 
 

Fig. 5 RZ constellation. (After [Kins15b, p. 39]) 
 
 By changing the signal symbol for a 0 from (LO,LO) 
to (LO,HI), the original Manchester code is re-discovered, 
as shown in Fig 6! This (1B2B) code is self-clocking, and it 
has error-detection capabilities because the (LO,LO) and 
(HI,HI) symbols are illegal. Notice that the contemporary 
definition of the Manchester code reverses its polarity. 
 

 
 

Fig. 6 Manchester code. (After [Kins15b, p. 40]) 
 
 Having established the principles behind the mBnL 
codes, the discussion continues with a (2B2Q) code which 
is a perfectly-balanced code, but is highly underutilized (4 
symbols used out of the total of 16), as shown in Fig 7. To 
increase the code utilization, a code 3B2Q (tree bits, two 
slots, four signal levels) is introduced and discussed. Since 
at this point, the understanding of the codes is quite 
complete, the discussion proceeds with the code 4B3T (four 
message bits, three slots, each with ternary signal levels) 
and its extensions. 
 

 
 

Fig. 7 2B2B line code. (After [Kins15b, p. 41]) 
 
 This baseband encoding design pattern language is also 
used to explain passband encoding with various shift-
keying schemes (ASK, FSK, PSK, and QAM) [17]. 
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5. CONCLUDING REMARKS 

 
 This paper presents an example of engineering and 
educational design patterns situated in an undergraduate 
course on real-time interfacing of embedded systems. This 
is a one-term four-credit hour course with a laboratory. The 
material that must be covered in such a course is very 
diverse, with many details on hardware and software. 
Without design patterns, the material covered would appear 
to be very disjoint, and would emphasize the “how-to 
implement” a specific circuit, or module, or subsystem, or 
system. Such a “how-to” exposure has its merits for the 
first-time designers and system maintainers, but is 
inadequate for engineers who must solve problems with 
new and emerging technologies. 
 A major part of engineering education is (i) the 
extraction of general patterns from a variety of specific 
materials presented, (ii) the ability to discern between detail 
and a time/space-invariant feature of the system, (iii) 
“connecting the dots” (generalization) between different 
elements of the design, and (iv) the ability to deal with new 
technologies and algorithms that emerge in the future. 
Engineering and educational design patterns have helped 
significantly in achieving those goals in the real-time 
interfacing of embedded systems course. 
 Design patterns may also be helpful in teaching other 
courses such as cognitive systems [27], [25], as well as in 
the development of new bodies of knowledge for 
practitioners (BoK4P) [16], and in the modification of 
existing courses to include humanitarian engineering [24]. 
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