
Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  1 of 8  –  

TEACHING DESIGN PATTERNS 
IN A REAL-TIME EMBEDDED SYSTEMS INTERFACING COURSE 

 
Witold Kinsner 

 
Cognitive Systems Laboratory 

Department of Electrical and Computer Engineering 
University of Manitoba, Winnipeg, MB, Canada R3T 5V6 

witold.kinsner@umanitoba.ca 
 

 
Abstract: This paper presents an overview of design 
patterns for teaching an undergraduate course on 
interfacing of microcontrollers, microprocessors and 
microcomputers for real-time systems. Such design patterns 
are useful because the course must cover a wide range of 
topics for both wired and wireless systems, and is intended 
for a variety of microcontrollers. Without the patterns, 
teaching all the material from ground up might not be 
feasible. 
 
Keywords: Real-time interfacing; embedded systems; 
design patterns; microcontrollers. 
 

1. INTRODUCTION 
 
1.1 Challenges with Teaching Interfacing 
 
 This paper presents a few design patterns for teaching 
an undergraduate course on interfacing of microcontrollers, 
microprocessors and microcomputers for real-time systems 
[20], [21]. The course is not based on one microcontroller 
(usually taught prior to a course on interfacing and 
embedded systems), but on a wider range of 
microcontrollers and microprocessors. The course is also 
intended to generalize the architectures and organizations in 
order to prepare the students for new technologies. 
Teaching such a course material from ground up is not 
feasible because of the extensive detail required. 
 The difficulty of teaching a course in this area stems 
from the diversity of topics that must be covered. Figure 1 
shows the granularity of topics included in the course (only 
the two top levels of topics are shown). 
 
1.2 Course Scope 
 
 The five top-level topic modules include: (i) an 
introduction to real-time computing, architectures, 
processors, and technologies, (ii) the architectures of the 
main microcontrollers and microprocessors, as well as of 
internal, external, peripheral and system buses, (iii) digital 
input/output (I/O) synchronization (e.g., different classes 
of polling and interrupts, direct memory access (DMA), 

context switching, and the major buffering techniques for 
isolation of input from the output, and for de-
synchronization between the input and output), (iv) digital-
to-analog (D/A), analog-to-digital (A/D), and digital-to-
digital (D/D) signal conversions, as well as the core types 
of converters (e.g., parallel flash, serial counting (single 
ramp), tracking, successive approximation (SA), integrating 
(dual slope, quad slope), voltage-to-frequency (V/F)-based 
converters, and delta-sigma converters [22]), and finally (v) 

 
 

Fig. 1 Elements of an interfacing course. 
 



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  2 of 8  –  

interfacing aspects in data communications (e.g., major 
wired (baseband) and wireless (passband) data 
communications protocols, data encoding, signal 
conditioning, forward error detection and correction). 
 The D/D1-3 digital-to-digital signal conversion refers 
to source coding, security coding, and channel coding, 
while D/DA refers to line coding. Source coding 
(compression) changes the original digital bit stream to 
another more compact bit stream by removing redundancy 
from the original data. This increases data throughput by 
transmitting or storing the relevant information only. On 
the other hand, compression makes the data stream more 
vulnerable to errors on the channel or in storage. Security 
coding refers to protecting data against their inappropriate 
use, and is necessary in all digital systems now [19]. 
 As an integral part of interfacing, the course also 
presents some aspects of channel coding with its error 
detection and correction [18]. It distinguishes between 
error detection and correction techniques that are suitable 
for real-time systems. It covers error correction techniques 
that use retransmission (the automatic retransmission 
request, ARQ) and forward error correction for real-time 
data communications such as the Hamming family of codes 
for memoryless channels. The benefits of channel coding 
come at a price: the error protection requires some extra 
redundancy in the original bit stream, thus reducing its 
throughput. To cover the topics properly in the course, the 
D/D conversions are presented using design patterns. 
 Finally, line coding translates the data bit stream into 
another bit stream in order to achieve several objectives: (i) 
to reduce the DC component of the signal due to long runs 
of 1s (or 0s) in order to reduce line wandering, (ii) to 
embed the data clock into the data bits, thus achieving self-
clocking codes, and (iii) to make the bit stream differential, 
thus making it independent of wire polarity [17]. The 
benefits of line coding also come at a price: the bandwidth 
of the signal may be increased, thus affecting its power to 
maintain the signal to noise ratio and error protection. This 
paper presents an example of line coding design patterns in 
Sec. 3. 
 
1.3 Course Lab Structure 
 
 The previous implementations of our lab experiments 
in this course utilized various microprocessors and 
microcontrollers, including the 6800, 68000, 6805, HC08, 
and the HC11, all in printed-circuit boards designed and 
implemented by us in house. To keep up with newer 
technologies and architectures, a new set of labs based on 
the HCS12 microcontroller development board has been 
implemented [23]. The new laboratories have been 
developed and presented to the students twice, followed by 
numerous improvements and corrections of the lab manual. 
A new tutorial on the HCS12 has also been developed. 
Selection of topics in the tutorial, their presentation and 
structure are all quite novel, and should be helpful in 

reinforcing the knowledge of this important pipelined 
microcontroller that is compatible with many legacy 
microprocessors and microcontrollers. 
 

2. INTRODUCTION TO DESIGN PATTERNS 
 
2.1 What is a Pattern? 
 
 A pattern is a regularity in either the physical, or man-
made, or abstract world as discerned by our senses or by 
mathematical analysis. The patterns often include 
symmetry, spirals (often logarithmic), trees, waves, bubbles, 
stripes, fractures. Those patterns can be either static, or 
dynamic, or dynamical, and originate from deterministic or 
stochastic processes. Many of the rich patterns are self-
affine (fractal and multifractal) [37], [26], [28]. 
 
Discovering patterns and their dynamics in both nature and 
the abstract world is an important part of life. It is 
important in mathematics (transformations and modelling) 
[1], [31], [35], [34], physics (growth, percolation, materials) 
[36], [5], chemistry (pattern in space such as symmetry in a 
molecule affecting its infrared spectrum) [3], geology and 
geophysics [37], engineering (statics and dynamics) [12], 
[4], stocks (trends) [33], biology and medicine (patterns of 
health) [38], [11], [39], and other areas. 
 
2.2 What is a Design Pattern? 
 
 Design patterns are intended to capture the best 
practices in a specific domain. They are formally-
documented solutions to design problems, often found in 
real-world applications, and presented in a compact form 
that can be easily communicated to those who need the 
knowledge. It is a description or a template for how to 
solve a problem that can be used in many different 
situations. “Patterns are about reusable designs and 
interactions of objects. A pattern documents a recurring 
problem–solution pairing within a given context. A pattern, 
however, is more than either just the problem or just the 
solution structure: it includes both the problem and the 
solution, along with the rationale that binds them together” 
[10]. 
 The term "design pattern" is usually attributed to 
Christopher Alexander and his colleagues in the context of 
architecture, urban design, and community liveability, 
where it signifies a way of capturing and communicating 
critical design ideas [2]. 
 A design pattern has the following attributes: 
(i) It must explain why a particular situation causes 

problems, and why the proposed solution is considered 
a good one; 

(ii) It does not provide a single solution to a problem, but 
proposes a guide and a stencil toward a best design for 
a particular application under specific constraints; 



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  3 of 8  –  

(iii) It must also explain the range of situations in which a 
pattern can be used (i.e., the context); and 

(iv) Patterns enhance the different perspectives on a 
solution [9] 

2.3 What is a Design Pattern Language? 
 
 A pattern language is a set of design patterns that work 
together to generate complex behaviour and complex 
artefacts, while each pattern within the language is simple 
in itself. Patterns in isolation provide only incremental 
improvements to software systems, processes, 
organizations, and design. A pattern language may provide 
a more fundamental and more lasting improvement. 
 
2.4 Design Patterns In Different Disciplines 
 
Patterns in Software Engineering 
 In software engineering, design patterns are very 
important and have been used for a long time (e.g., Gamma 
and colleagues [15] who were inspired by Alexander’s 
work). Design patterns can speed up the development 
process by providing tested, proven development 
paradigms. 
 
Patterns in Human-Machine Interaction (HMI) 
 Design patterns in the human-computer interaction 
(HCI) are often used for developing user interfaces because 
they render the communication among stakeholders 
efficient, and allow for quicker design of the interfaces [13], 
[30]. 
 
Collaboration patterns 
 Patterns in collaborative working environments (CWE) 
have also been defined at different levels of granularity and 
in relation to different application contexts [32]. They are 
intended to enhance collaboration and its impact on 
projects. 
 
Patterns in Education 
 These examples of patterns are closely related to the 
design patterns discussed in this paper. Pedagogical 
patterns have been developed to capture expert knowledge 
(the essence) of the practice of teaching and learning [7], 
[6]. Recurring teaching problems include: choosing and 
sequencing materials, evaluating students, motivating 
students, and instilling life-long learning. Every new 
instructor can benefit from a senior faculty member and 
from a pattern language. Design patterns have been 
developed for good seminars and their delivery [14]. 
Lecture design patterns have been described to increase the 
efficiency of this form of education through a foundation of 
good lectures [29]. Experiential learning design patterns 
have also been developed [8]. Another set of patterns has 

been developed to gain different perspectives in the class 
[9]. 
 

3. AN EXAMPLE OF INTERFACING PATTERNS 
 
 This example is taken from the data communications 
module (Fig. 1) which is very rich in content and includes: 
(i) source coding, (ii) security coding, (iii) channel coding, 
(iv) line coding, and (v) digital modulation for wireless. 
 
3.1 Scope of Line-Coding in the Course 
 
 The source, security and channel coding stages are 
required in preparing data for storage and/or transmission, 
but are not sufficient to transmit data because the bits are 
still in the internal representation of the computing node. 
Line coding is concerned with translating the abstract state 
representations (binary or non-binary symbols) into a 
physical digital temporal form (a boxcar signal) for 
transmission over digital communications channels, either 
wired (baseband) or wireless (passband). 
 The objectives of the line coding are: (i) the maximum 
data rate with the smallest signal rate, (ii) the smallest 
bandwidth, (iii) no DC component, (iv) self-
synchronization, (v) immunity to noise and interference, 
and (vi) built-in error detection. Those objectives are often 
conflicting. 
 
3.2 Types of  Line Codes 
 
 Line coding includes various types of codes, as shown 
in Fig. 2. 
 

 
 

Fig. 2 Types of line codes. (After [Kins15b, p. 16]) 
 
Unipolar Codes: All the signal levels s = {LO,HI) for all 
the symbols in the message alphabet (e.g., m = {0,1)) are 
either positive or negative, not both. Recall that an alphabet 
is a set of non-repeating symbols. 
 
Polar Codes: Signal levels for the message symbols are 
both positive and negative (at different times). 
 



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  4 of 8  –  

Bipolar Codes: Signal levels for a single message symbol 
alternates sign (at different times) while the other symbol is 
zero. Example: AMI. 
 
Multilevel Codes (mBnL): This line code can transmit one 
m-bit message symbol at a time. The m-bit symbol message 
alphabet is m = {m1,m2, ), with cardinality M. For 
example, if each message symbol has m = 3 bits, M = 2m = 
8. To transmit each symbol in one signal symbol slot, the 
signal symbol would have to have L = 8 levels. This code 
would be denoted as (8B1O) where O stands for “octal.” 
However, detecting eight signal levels is not easy in the 
presence of noise. 
  In order to reduce the number of signal levels to L =  4, 
we must split the message symbol cell into two slots. Since 
both slots have the same number of signal symbols, the 
total number of signal symbols is N = Ln = 42 = 16. Since 
we need only 8 distinct signals, the remaining 8 can serve 
as alternatives for code balancing, or as error detection. 
This code would be denoted as (3B2Q) where Q stands for 
“quad.” 
 We might further simplify the decoding by reducing 
the number of signal levels to three (L = 3). Since the 
number of distinct signals in the two slots is N = Ln = 32 = 
9, we can eliminate the signal condition 00, and still have 
the required 8 signal symbols to transmit the eight message 
symbols. The code is denoted by (3B2T) where T stands for 
“ternary.” 
 All these schemes belong to a broad class of pulse 
amplitude modulation (PAM) signal encoding. Each signal 
symbol requires a period of time (symbol cell), Ts, to be 
formed for transmission. Thus, the signalling rate (the 
number of signal changes per unit of time expressed in 
baud) is fs = 1/Ts. If the symbol is a bit, then the signalling 
rate is the same as bit rate in bits per second, bps. 
 
3.3 Basic Line-Coding Design Patterns 
 
 The course provides an explanation of the codes 
structure, with emphasis on the reasons for each new code. 
For example, the minimization of the DC component is 
demonstrated through the changes from the unipolar non-
return-to-zero level (NRZ-L) signal to the polar NRZ-L, 
then from the unipolar return-to-zero (RZ) to polar RZ and 
to the bipolar alternate-mark-inversion (AMI) signal. This 
is followed by demonstration of why embedding a data 
clock in the data stream is necessary, and what the 
conditions for self-clocking codes are, with examples of the 
construction of the pulse-width modulation (PCM), double-
frequency code (DFC), Manchester biphase, and the code-
mark-inversion (CMI). The clock recovery techniques are 
also discussed (e.g., the phase-locked loop, PLL, and the 
maximum lakelihood estimation, MLE). The conditions for 
polarity independence are also discussed, followed by the 
construction of a Manchester differential code and its 

derivatives. Code scrambling is discussed, including the 
bipolar with 8-zero substitution (B8ZS) and the high-
density bipolar 3 (HDB3) as a modification of the AMI 
code. 
 Notice that all the codes were explained using a 
corresponding design pattern. The collection of the design 
patterns constituted a design-pattern language (DPL) for the 
Line codes. Within the language, the principle of code 
construction evolved naturally. For example, the binary 
signalling scheme transmits a message (a binary bit stream) 
by converting it into a suitable analog boxcar signal form 
such as the Manchester differential. The message is 
constructed from an alphabet consisting of two symbols 
m = {0,1}. The signal is also constructed from an alphabet 
consisting of two symbols s = {s1,s2} = {LO, HI}, where 
LO may be either 0, or A, or A/2 (denoted as LO = {0 
| A | A/2} where the vertical bar denotes OR), and HI 
= {A | A/2}. For example, the NRZ code is taken from {0, 
A}, and Manchester from {–A/2, A/2}. The amplitude, A, 
can be either 15 volts (V), 5 V, 3.3 V or some other value. 
In the context of this design pattern language, we can ask if 
there is any other code to perform better than the binary 
code? 
 
3.4 The Multilevel mBnL Design Patterns 
 
 The multilevel signalling (mBnL) is introduced by 
rephrasing the NRZ signal as a two-level PAM (2PAM) 
and its equivalent 1-bit message symbol and 1-bit binary 
signal symbol (1B1B), as shown in Fig. 3. 
 

 
 

Fig. 3 NRZ constellation. (After [Kins15b, p. 35]) 
 
 The 4PAM (2B1Q) signal is shown in Fig. 4. The 
features of the new code are discussed, with emphasis on its 
inability to control the DC component, even though it has 
some self-clocking capabilities. What should be done in 
order to achieve a better self-clocking and DC control? 
 



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  5 of 8  –  

 
 

Fig. 4 2B1Q line code. (After [Kins15b, p. 36]) 
 
 This analysis resulted in a second rephrasing of the RZ 
code: The bit cell for a 1 in the RZ code can be considered 
as having two time slots: the first has a HI, and the second 
has a LO. Thus, the signal symbol for a 1 is (HI,LO), with 
the transition in the middle of the bit cell, while the signal 
symbol for a 0 is (LO,LO), as shown in Fig 5. 
 

 
 

Fig. 5 RZ constellation. (After [Kins15b, p. 39]) 
 
 By changing the signal symbol for a 0 from (LO,LO) 
to (LO,HI), the original Manchester code is re-discovered, 
as shown in Fig 6! This (1B2B) code is self-clocking, and it 
has error-detection capabilities because the (LO,LO) and 
(HI,HI) symbols are illegal. Notice that the contemporary 
definition of the Manchester code reverses its polarity. 
 

 
 

Fig. 6 Manchester code. (After [Kins15b, p. 40]) 
 
 Having established the principles behind the mBnL 
codes, the discussion continues with a (2B2Q) code which 
is a perfectly-balanced code, but is highly underutilized (4 
symbols used out of the total of 16), as shown in Fig 7. To 
increase the code utilization, a code 3B2Q (tree bits, two 
slots, four signal levels) is introduced and discussed. Since 
at this point, the understanding of the codes is quite 
complete, the discussion proceeds with the code 4B3T (four 
message bits, three slots, each with ternary signal levels) 
and its extensions. 
 

 
 

Fig. 7 2B2B line code. (After [Kins15b, p. 41]) 
 
 This baseband encoding design pattern language is also 
used to explain passband encoding with various shift-
keying schemes (ASK, FSK, PSK, and QAM) [17]. 
 



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  6 of 8  –  

 
5. CONCLUDING REMARKS 

 
 This paper presents an example of engineering and 
educational design patterns situated in an undergraduate 
course on real-time interfacing of embedded systems. This 
is a one-term four-credit hour course with a laboratory. The 
material that must be covered in such a course is very 
diverse, with many details on hardware and software. 
Without design patterns, the material covered would appear 
to be very disjoint, and would emphasize the “how-to 
implement” a specific circuit, or module, or subsystem, or 
system. Such a “how-to” exposure has its merits for the 
first-time designers and system maintainers, but is 
inadequate for engineers who must solve problems with 
new and emerging technologies. 
 A major part of engineering education is (i) the 
extraction of general patterns from a variety of specific 
materials presented, (ii) the ability to discern between detail 
and a time/space-invariant feature of the system, (iii) 
“connecting the dots” (generalization) between different 
elements of the design, and (iv) the ability to deal with new 
technologies and algorithms that emerge in the future. 
Engineering and educational design patterns have helped 
significantly in achieving those goals in the real-time 
interfacing of embedded systems course. 
 Design patterns may also be helpful in teaching other 
courses such as cognitive systems [27], [25], as well as in 
the development of new bodies of knowledge for 
practitioners (BoK4P) [16], and in the modification of 
existing courses to include humanitarian engineering [24]. 

Acknowledgements 
 
 We would like to thank the Department of Electrical 
and Computer Engineering at the University of Manitoba 
for partial financial support of this project. I would like to 
thank many students from my undergraduate and graduate 
courses who expressed the need for engineering design 
patterns. I would also like to thank many of my colleagues 
in education, and particularly Ken Ferens, for discussions 
on how to teach for the future. 
 

References 
 
[1] John A. Adam, Mathematics in Nature: Modeling 

Patterns in the Natural World. Princeton, NJ: 
Princeton University Press, 2003, 360 pp. {ISBN 0-
691-11429-3, pbk} 

 
[2] Christopher Alexander, Sara Ishikawa, and Murray 

Silverstein, A Pattern Language: Towns, Buildings, 
Construction. Oxford, UK: Oxford University Press, 
1977, 1171 pp.. {ISBN 0-19-501919-9} 

 

[3] Bruce A. Averill and Patricia Eldredge, General 
Chemistry: Principles, Patterns, and Applications. 
Washington, DC: Saylor Academy, 2015, 2365 pp. 
{ISBN 13: 978-1-4533223-0-7, PDF, Open Textbook} 
Retrieved May 9, 2015 from the Saylor Academy at 
https://open.umn.edu/opentextbooks/BookDetail.aspx?
bookId=69 
http://www.saylor.org/books 

 
[4] Soumitro Banerjee and George C. Verghese, Nonlinear 

Phenomena in Power Electronics: Attractors, 
Bifurcations, Chaos, and Nonlinear Control. 
Piscataway, NJ: IEEE Press, 2001, 441 pp. {ISBN 0-
7803-5383-8, hbk} 

 
[5] Albert-László Barabási and H. Eugene Stanley, Fractal 

Concepts in Surface Growth. Cambridge, UK: 
Cambridge University Press, 1995, 366 pp. {ISBN 0-
521-48318-2, pbk} 

 
[6] Joseph Bergin, Some Pedagogical Patterns. New York, 

NY: Pace University, 2015. Retrieved May 4, 2015 
from Pace University at 
http://csis.pace.edu/~bergin/patterns/fewpedpats.html#
unp 
http://csis.pace.edu/~bergin 

 
[7] Joseph Bergin, Jutta Eckstein, Markus Völter, Marianna 

Sipos, Eugene Wallingford, Klaus Marquardt, Jane 
Chandler, Helen Sharp, Mary Lynn Manns (eds.), 
Pedagogical Patterns: Advice for Educators. Joseph 
Bergin Software Tools, 2012, 190 pp. {ISBN-13: 978-
1479171828} Retrieved May 4, 2015 from Joseph 
Bergin at 
http://www.pedagogicalpatterns.org/ 

 
[8] Joseph Bergin, Klaus Marquardt, Mary Lynn Manns, 

Jutta Eckstein, Helen Sharp, and Eugene Wallingford, 
“Patterns for experiential learning,” in Proc. 6th 
European Conference on Pattern Languages of 
Programs, EuroPLoP01. Andreas Rüping, Jutta 
Eckstein, and Christa Schwanninger  (eds.) (Kloster 
Irsee, Bavaria, Germany; July 4-8, 2001), July 2002, 
580 pp. {ISBN 978-3-87940-780-4; 59.00!} 19 pp., 
2001. Retrieved May 4, 2015 from UVK 
Verlagsgesellschaft at 
http://www.agile-
practice.com/pedagogicalPatterns/experientiallearning.
pdf 

 
[9] Joe Bergin, Jutta Eckstein, Mary Lynn Manns, and 

Eugene Wallingford, “Patterns for gaining different 
perspectives: A part of the Pedagogical Patterns 
Project pattern language,” in Proc. 6th European 
Conference on Pattern Languages of Programs, 
EuroPLoP01. Andreas Rüping, Jutta Eckstein, and 



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  7 of 8  –  

Christa Schwanninger  (eds.) (Kloster Irsee, Bavaria, 
Germany; July 4-8, 2001), July 2002, 580 pp. {ISBN 
978-3-87940-780-4; 59.00!} 17 pp., 2001. Retrieved 
May 4, 2015 from UVK Verlagsgesellschaft at 
http://www.europlop.net/content/past-europlops 
http://www.europlop.net/content/annual-proceedings 
http://www.europlop.net/ 

 
[10] Frank Buschmann, Kevlin Henney, and Douglas C. 

Schmidt, Pattern-Oriented Software Architecture: On 
Patterns and Pattern Languages. Vol. 5. Hoboken, NJ: 
Wiley, 2007, 490 pp. {ISBN: 978-0-471-48648-0, hbk; 
$77} Retrieved May 4, 2015 from UVK 
Verlagsgesellschaft at 
http://media.wiley.com/product_data/excerpt/28/04700
590/0470059028.pdf 

 
[11] Scott Camazine, Jean-Louis Deneubourg, Nigel R. 

Franks, James Sneyd, Gyu Theraulaz, and Eric 
Bonabeau, Self-Organization in Biological Systems. 
Princeton, NJ: Princeton University Press, 2001, 538 
pp. {ISBN 978-0-691-11624-2, pbk} 

 
[12] Guanrong Chen (ed.), Controlling Chaos and 

Bifurcations in Engineering Systems. Boca Raton, FL: 
CRC Press, 1999, 648 pp. {ISBN 0-8493-0579-9, hbk} 

 
[13] Andy Dearden & Janet Finlay, “Pattern languages in 

HCI: a critical review,” Human Computer Interaction, 
vol. 21, no. 1, pp. 49-102, 2006. Retrieved May 4, 
2015 from UVK Verlagsgesellschaft at 
http://shura.shu.ac.uk/22/2/DeardenFinlayFormatted.pd
f 

 
[14] Astrid Fricke and Markus Völter, “Seminars: A 

pedagogical pattern language about teaching seminars 
effectively,” in Proc. Fifth European Conference on 
Pattern Languages of Programs, EuroPLoP 2000 
(Kloster Irsee, Germany; July 5-9 2000) 2000, 36 pp. 
Retrieved May 4, 2015 from UVK Verlagsgesellschaft 
at 
http://www.coldewey.com/europlop2000/papers/voelte
r+fricke.zip 
http://www.coldewey.com/europlop2000/contents.html 
http://www.voelter.de/seminars 

 
[15] Erich Gamma, Richard Helm, Ralph Johnson and John 

Vlissides, Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley, 1994, 395 
pp. {ISBN 0-201-63361-2} 

 
[16] Witold Kinsner, “Expanding the Body of Knowledge 

Concept for Professional Practitioners (BoK4P),” in 
Proc. 2015 Canadian Engineering Education 
Association Conference, CEEA15 (Hamilton ON: May 
31 to June 3, 2015), Paper 172, 12 pp, 2015. 

 
[17] Witold Kinsner, Line Coding: Encoding and 

Modulation of Analog Signals. Technical report. 
Winnipeg, MB: University of Manitoba, Electrical and 
Computer Engineering, Version 327, February 2015, 
77 pp. 

 
[18] Witold Kinsner, Error Detection and Correction: ARQ 

and FEC. Technical report. Winnipeg, MB: University 
of Manitoba, Electrical and Computer Engineering, 
Version 323, March 2015, 76 pp. 

 
[19] Witold Kinsner, Security: Protection of Embedded 

Systems. Technical report. Winnipeg, MB: University 
of Manitoba, Electrical and Computer Engineering, 
Version 329, April 2015, 84 pp. 

 
[20] Witold Kinsner, Microcontroller, Microprocessor, and 

Microcomputer Interfacing for Real-Time Systems. 
Lecture Notes. Winnipeg. MB: University of Manitoba, 
2014, 643 pp. 

 
[21] Witold Kinsner, Laboratories for Microcontroller, 

Microprocessor, and Microcomputer Interfacing for 
Real-Time Systems. Lab Notes; Winnipeg. MB: 
University of Manitoba, 2014, 102 pp. 

 
[22] Witold Kinsner, “Teaching delta-sigma conversion in 

an interfacing course,” in Proc. 2014 Canadian 
Engineering Education Association Conference, 
CEEA14 (Canmore, AB: June 8-11, 2014), Paper 107, 
8 pp, 2014. 

 
[23] Witold Kinsner, “Selecting a microcontroller 

development systems for a laboratory in a real-time 
interfacing course,” in Proc. 2014 Canadian 
Engineering Education Association Conference, 
CEEA14 (Canmore, AB: June 8-11, 2014), Paper 113, 
10 pp, 2014. 

 
[24] Witold Kinsner, “Humanitarian engineering education: 

Examples,” in Proc. 5th Conference of the Canadian 
Engineering Education Association, CEEA 2014 
(Canmore, AB; June 8-11, 2014). Paper 121, 6 pp., 
2014. 

 
[25] Witold Kinsner, Simon Haykin, Yingxu Wang, Witold 

Pedrycz, Ivo Bukovsky, Bernard Widrow, Andrzej 
Skowron, Piotr Wasilewski, and Menahem Friedman, 
“Challenges in engineering education of cognitive 
dynamic systems,” in Proc. of the Canadian 
Engineering Education Association Conference, CEEA 
2012, (Winnipeg, MB, Canada; June 17–20, 2012), 
Paper 119, pp. 51-62, 2012. Accessed Mar 2015 from 
CEEA at 

 http://library.queensu.ca/ojs/index.php/PCEEA/article/



Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf. 
 

CEEA 2015; Paper 164   
McMaster University; May 31-June 3, 2015 –  8 of 8  –  

viewFile/4633/4615 
 http://www.ceea.ca/images/content/ceea12-proc-

complete-v35s.pdf 
 
[26] Witold Kinsner, “System complexity and its measures: 

How complex is complex,” in Yingxu Wang, Du 
Zhang, and Witold Kinsner (eds.), Advances in 
Cognitive Informatics and Cognitive Computing. 
Berlin: Springer Verlag, Vol SCI 323, pp. 265-295, 
2010. {ISBN 978-3-642-16082-0; eISBN 978-3-642-
16083-7} 

 
[27] Witold Kinsner, “Challenges in the design of adaptive, 

intelligent and cognitive systems,” Intern. J. Software 
Science & Computational Intelligence, vol. 1, no. 3, pp. 
16-35, July-Sept. 2009. 

 
[28] Witold Kinsner, “A unified approach to fractal 

dimensions,” Intern. J. Cognitive Informatics and 
Natural Intelligence, vol. 1, no. 4, pp. 26-46, Oct-Dec 
2007. 

 
[29] Christian Köppe and Joost Schalken-Pinkster, Lecture 

Design Patterns: Laying the Foundation,” in Proc. 18th 
European Conference on Pattern Languages of 
Programs, EuroPLoP13 (Kloster Irsee, Germany; July 
10-14, 2013) 2013, 27 pp. 
http://koeppe.nl/publications/LecturePatterns-
Foundation-authorversion.pdf 
http://www.europlop.net/content/europlop-2013 
http://www.europlop.net/ 

 
[30] Christian Kruschitz and Martin Hitz, “Analyzing the 

HCI design pattern variety,” in Proc. 1st Asian 
Conference on Pattern Languages of Programs, 
AsianPLoP 2010 (Tokyo, Japan; March 16-17, 2010) 
Paper #6, 2010. {doi>10.1145/2371736.2371745} 
Retrieved May 2015 from the ACM Library at 
http://scholar.google.ca/scholar_url?url=http%3A%2F
%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2371745&
hl=en&sa=T&ct=res&cd=0&ei=o0lQVZzDMdLtqQG
vyoHYCg&scisig=AAGBfm3WHauXsQwgxQdwU8S
CRrnDq2QZwg&nossl=1&ws=1234x1002 

 
[31] Klaus Mainzer, Thinking in Complexity: The 

Computational Dynamics of Matter, Mind, and 
Mankind. New York, NY: Springer, 2004 (4th ed.), 
456 pp. {ISBN 3-540-62555-0, hbk} 

 
[32] Jonas Pattberg and Matthias Fluegge, “Towards an 

ontology of collaboration patterns,” in Proc. 5th 
International Workshop on Challenges in 
Collaborative Engineering, CCE’07 (Cracow, Poland; 
April 11-13, 2007) Lecture Notes in Informatics, Vol. 
P-120, pp. 85-96, 2007. 
http://cs.emis.de/LNI/Proceedings/Proceedings120/gi-
proc-120-007.pdf 
http://subs.emis.de/LNI/Proceedings/Proceedings120.h
tml 
http://subs.emis.de/LNI/Proceedings.html 
http://www.springer.com/computer/lncs?SGWID=0-
164-2-470309-0 

 
[33] Edgar E. Peters, Fractal Market Analysis: Applying 

Chaos Theory to Investment and Economics. New 
York, NY: Wiley, 1994, 315 pp. {ISBN 0-471-58524-6, 
hbk} 

 
[34] Przemyslaw Prusinkiewicz and Aristid Lindenmayer, 

The Algorithmic Beauty of Plants. New York, NY: 
Springer, 1990, 228 pp. {ISBN 0-387-97297-8, hbk} 

 
[35] Manfred Schroeder, Fractals, Chaos, Power Laws: 

Minutes from an Infinite Paradise. New York, NY: 
W.H. Freeman, 1991, 429 pp. {ISBN 0-7167-2136-8, 
hbk} 

 
[36] Tamás Vicsek, Fractal Growth Phenomena. Singapore: 

World Scientific, 1992 (2nd ed.), 488 pp. {ISBN 
9810206690, pbk} 

 
[37] Donals L. Turcotte, Fractals and Chaos in Geology 

and Geophysics. Cambridge, UK: Cambridge 
University Press, 1997, 398 pp. {ISBN 0-521-56733-5, 
pbk} 

 
[38] Jan Wallechek (ed.), Self-Organized Biological 

Dynamics and Nonlinear Control. Cambridge, UK: 
Cambridge University Press, 2000, 428 pp. {ISBN 0-
521-62536-3, hbk} 

 
[39] Arthur T. Winfree, The Geometry of Biological Time. 

New York, NY: Springer, 2006 (2nd ed.), 777 pp. 
{ISBN 0-387-98992-7, hbk} 

 

 


