
Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf.

CEEA15; Paper 113

McMaster University; May 31 – June 3, 2015
– 1 of 6 –

INTEGRATING UCD WITHIN AN AGILE SOFTWARE DEVELOPMENT

PROCESS IN AN EDUCATIONAL SETTING

Olga Ormandjieva*, Kristina Pitula*, Cherifa Mansura #

* Computer Science and Software Engineering Department

Concordia University

Montreal, Quebec, Canada

{olga.ormandjieva, kristina.pitula}@concordia.ca

#TEKsystems

Montreal, Canada

cherifamans @videotron.ca

Abstract – The Canadian Engineering Accreditation Board

has defined 12 attributes that an institution must demonstrate

graduates of its engineering program possess. We are in

pursuit of the attribute "Design” dealing with the students’

ability to select candidate engineering design solutions for

development, with three indicators relating to how candidate

solutions are selected. Our approach to teaching “Design” is

based on “learning outcomes” rather than “teaching inputs”.

In this paper, we describe the learning outcomes of teaching a

newly proposed Integrated User Centered Design (UCD)-

Agile Process in the context of a one term project course

wherein teams of undergraduate students apply what they

have learnt about Agile software development and User

Interface (UI) design in the context of a real-world project

with actual clients. The Integrated UCD-Agile Process

includes upfront design of the UI in parallel with development

of the functionalities, UI design specialists for each sprint and

usability testing of all UI design decisions.

Keywords: Canadian Engineering Accreditation Board

(CEAB), Design attribute, Agile Software Development

Process, User Centered Design, User Interface Design and

Evaluation.

1. INTRODUCTION

Quality of education makes a big difference. Students who

graduate from accredited programs have had access to better

learning opportunities at school and therefore secure better

employment opportunities. Accreditation of software courses

promotes best practices in education and gives assurance that

professionals have a solid educational foundation and can

assume leadership roles in industry and life.

In 2010 the Canadian Engineering Accreditation Board

(CEAB) defined 12 attributes an institution must demonstrate

that its engineering program graduates possess, including

Design, Individual and Team Work, Communication Skills

and Problem analysis. In this paper we tackle the attribute

“Design” that deals with the ability of students to select

candidate engineering design solutions for further

development.

Over the past few years we have given a one term software

engineering project course SOEN 390 at Concordia University

wherein teams of undergraduate students apply Agile software

development and User Interface (UI) design in the context of

real-world projects with actual clients. In the most recent

course, we adapted the Scrum methodology followed by the

students to more fully integrate User Centred Design (UCD)

within the Agile process. As recognized by industry, a Scrum

approach has certain deficiencies as to when and how UI

design activities are addressed [11]. The development teams

face unique challenges when user experience is prominent on

a project, such as the issue of content accessibility and the

diversity of existing standards that platforms and content are

expected to adhere to. Effectively tailoring Agile strategies to

meet these challenges requires a scaled approach. Our

approach includes the upfront design of the overall UI (in

parallel with development of the functional requirements), UI

design specialists assigned to each sprint as well as iterative

usability testing of all UI design decisions throughout the

project.

Comparing the project outcomes to those of previous years,

we demonstrate that integrating UCD within the Agile process

resulted in a better solution, measured in terms of the UI

design evaluation and customer satisfaction.

The remaining part of the paper is organized as follows:

Section 2 introduces the required background and surveys the

related work. Our approach to student-centred learning in a

software engineering project course is explained in section 3.

The learning outcomes are discussed in section 4. The

conclusions and future work directions are summarized in

section 5.

Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf.

CEEA15; Paper 113

McMaster University; May 31 – June 3, 2015
– 2 of 6 –

2. BACKGROUND AND RELATED WORK

2.1 Agile Methodologies

 The excitement around agile development methodology is

undeniable and increasing over time. Most organizations

started their agile journey by adopting Scrum and/or Extreme

Programming (XP) practices. At the low end of the formality

scale, a scrum project management method has no explicit life

cycle, no explicit UI definition and no explicit set of UCD

deliverables.

These approaches are useful when software projects remain

simple and are executed by a co-located team. User stories are

the primary vehicle for carrying the customer's requirements

through the value stream, from discovery to just-in-time (JIT)

analysis, through coding, testing, and deployment. In such

smaller, well-contained projects, the lack of UCD deliverables

is seldom an issue and if any UI activities are identified, those

will be highlighted as tasks (part of a user story

implementation) during iteration planning. However, as

project complexity grows in size and distribution and as

compliance needs and the importance of nonfunctional

requirements such as usability increases, a Disciplined Agile

Delivery (DAD) approach becomes crucial to project success

By providing the framework to integrate varied activities in

increments, DAD bridges the gap between requirements,

UCD and development better by leveraging a full risk-value

cycle, adding agile governance, and specifying the adoption of

several complexity-driven practices in the design of UIs and

requirements [1].

2.2 User Centred Design (UCD)

User Centred Design (UCD) is an accepted standard for

designing interactive software systems that places the focus on

end-users to develop systems that meet the users’ needs and

wants. UCD promotes design as an iterative process in which

users are engaged on an on-going basis to drive and refine the

design based on feedback and evaluation, and offers a range

of established methods and tools for accomplishing this [5],

[13]. Nonetheless, producing a “good” design remains

difficult, as witnessed by the many poorly designed software

products and services in circulation [7]. Among the factors

that contribute to good design, understanding end-users, their

goals and expectations with respect to the proposed system,

validating design decisions with “real” users and designing for

the holistic user experience as opposed to localised interaction

are key from a UCD perspective [4]. Here the emphasis is on

“real” users whose needs are often only partially reflected in

client requirements. All involve time and resources to conduct

user research and run field studies as well as to analyse, share,

integrate and act upon the data collected, with significant

effort at the start of a project and more throughout to discover

user requirements, validate design decisions and address

usability issues as they arise.

In contrast, with Agile methods the focus is on the client.

The methodology promotes little upfront design, compressed

time frames, design in increments to deliver working software

within those time frames and minimal documentation. Given

that their respective frames of reference, priorities,

dependencies, risks and time frames do not coincide, it is no

surprise that integrating UCD within Agile is challenging. A

number of recommended practices are emerging from the

literature [11] [12]. These include: upfront interaction design

in Sprint 0 using UCD tools such as personas, usability

scenarios and low fidelity prototypes; basing User Stories on

usability scenarios and issues; use of low and high fidelity

prototypes to communicate and validate the evolving UI

design; and on-going user testing and usability inspections. It

is important that UCD practitioners be included as active

participants in team meetings and discussions to facilitate

communication and establish shared design goals throughout.

2.3 CEAB Attribute “Design”

The Canadian engineering accreditation board (CEAB)

mandate tasked each engineering program to assess student

outcomes in the form of graduate attributes. The attribute of

interest in this paper is “Design”. The CEAB “Design”

attribute is defined as “an ability to design solutions for

complex, open-ended engineering problems and to design

systems, components or processes that meet specified needs
with appropriate attention to health and safety risks,

applicable standards, and economic, environmental, cultural

and societal considerations” [3]. A study of the CEAB design

skill assessment tools was published recently in [6]. The

authors acknowledge the complexity of the design skill

assessment as student performance in design is a function of

several factors, including design process cognition, discipline-

specific knowledge and skills such as team skills,

communication skills, project management skills, etc.

 The University of Toronto developed concise lists of

global objectives and indicators for each attribute. This paper

assesses the “Design” attribute in terms of the following three

indicators [8] (see also section 3.4):

• Indicator 1: Apply formal multi-criteria decision

making tools to select candidate engineering design

solutions for further development

• Indicator 2: Use the results of experiments and analysis

to select candidate engineering design solutions for

further development

• Indicator 3: Consult with domain experts and

stakeholders to select candidate engineering design

solutions for further development

3. INTEGRATING USER CENTRED DESIGN

WITHIN THE AGILE PROCESS

In the past few decades there has been a general trend in

higher education towards student-centred learning addressing

Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf.

CEEA15; Paper 113

McMaster University; May 31 – June 3, 2015
– 3 of 6 –

the following main objectives: i) acquisition of knowledge, ii)

acquisition of skills to extend and improve one’s own

knowledge, and iii) acquisition of professional problem-

solving skills [9]. An example of such a learning approach in

software engineering education is the teaching of software

engineering project courses where the above-mentioned

objectives for higher education are simultaneously addressed.

Our approach to student-centred learning in a software

engineering project course is based on “learning outcomes”

rather than “teaching inputs”. Other educational methods such

as lectures and skills training in tutorials are also present, but

only to support the student-centred learning.

3.1 Course design

The software Agile process followed in this course is

Scrum with an emphasis on team work based on self-direction

and collaboration with the clients. Students are grouped in

teams consisting of 7-8 team members, with a total of 5-6

teams per class; all teams are given the same set of user

requirements to ensure fairness in course evaluation and team

competition. The course project is structured in blocks of 6

iterations (sprints), with each block centred on a user stories

theme; each sprint is time-boxed to be completed in 2 weeks.

The core of each sprint consists of a series of tasks. Team

meetings with the clients are held before each development

sprint to clarify the user stories, formulate work plan

objectives, and communicate the current status of the project.

In addition, the agile teams practice short daily collaborative

task-based meetings (10-15min). The meetings include

individual goal setting for the day (What am I going to do?),

strategy selection (How will I do it?) and goal evaluation of

the work completed the day before (Did it work?). The time-

boxed daily meetings require students to set focused questions

for other teammates and respond to inquiries from other team

members; the above emphasizes student-centred learning and

improves student communication skills. Peer review is

undertaken before code is checked in, which increases quality

awareness and the result-oriented contribution of individual

team members to the group work tasks. At the end of each

sprint, the teams have to present a progress report to the other

development teams, the instructor, the tutor and the clients.

This involves clearly demonstrating and explaining their

progress to several different panels. The process helps the

students to develop their presentation and communication

skills.

3.2 UI design shortcomings in student projects

 In theory, clients are the center of the Agile process, thus

one of the main objectives of this course was to learn to work

cooperatively and collaboratively with the clients. Following

the Scrum methodology exposed the problems of addressing

UI design activities late or not at all, with a consequent

negative impact on quality-in-use of deliverables and client

satisfaction. The main reason, not surprisingly, was a lack of

understanding of the clients’ needs and of the intended use of

the application under development. In many cases, the overall

UI consisted of an agglomeration of UI components

“tastefully” tacked onto the system as they were developed.

While individual UI components might adhere to usability

principles, taken as a whole, at best the UIs provided only

marginal support for users’ goals, expectations and behaviour.

The lack of a coherent, overall UI structure is a known

shortcoming with Agile approaches [11].

3.3 The integrated UCD-Agile process

To address this problem the course curriculum was

modified to fully integrate UCD within the Agile process. In

this section we first describe the modifications to the process

followed by an assessment of the CEAB “Design” attribute in

the integrated process.
To a large extent the modified Agile-UCD process

followed the recommendations listed in section 2.2. In Sprint

0, along with the Agile deliverables, teams were asked to

deliver personas, usability scenarios and a high-level vision of

their proposed UI (low fidelity prototype). The purpose of this

was to encourage students to think and talk about concrete

people using their system in the real world. Additionally, to

promote a holistic view, teams were asked to construct Use

Case Maps (UCM) to visually represent the complete set of

use scenarios. UCM notation is part of an international

standard for modelling user requirements in terms of flow of

behaviour superimposed over an optional component structure

[2]. In this case it was used to specify and analyse UI

capabilities and the flow of interaction in the overall UI from

a user’s perspective.

In the following sprints, low and high fidelity prototypes

were used to inspect and user test design options and decisions

for the UI increments. Because of resource limitations much

of this work was informal. However, to the extent possible

and particularly for critical design decisions, students

conducted tests with representative users. The final sprint

included a UI inspection based on a usability test protocol for

course evaluation purposes. The UI evaluation results are

summarized in Table 1.

Table 1: UI evaluation results per sprint (2014)

TEAM SPRINT

1

SPRINT

2

SPRINT

3

SPRINT

4

SPRINT

5

A_2014 88% 80% 100% 75% 95%
B_2014

86.60% 80% 100% 90% 90%
C_2014

94.40% 70% 100% 90% 85%
D_2014 87.50% 60% 85% 70% 70%
E_2014 73.75% 80% 85% 75% 85%
F_2014 86.50% 80% 70% 75% 80%

A comparison between the UI evaluation results in the

2014’s Sprint 5 and the 2013 final results (see Table 2) shows

Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf.

CEEA15; Paper 113

McMaster University; May 31 – June 3, 2015
– 4 of 6 –

that the integrated UCD-Agile process netted greater UI

design quality achievement than did the traditional Agile

methodology used in 2013.

Table 2: Final UI evaluation results (2013)

TEAM FINAL DEMOS

A_2013 80%

B_2013 82.86%

C_2013 73.33%

D_2013 90.71%

E_2013 61%

With regards to UCD documentation, teams maintained a

User Interface Requirements (UIR) document in which all

UCD related work was captured. In particular, teams were

required to document the rationale for all design decisions and

changes as well as potential usability issues for future testing

The project had certain special characteristics that gave

purpose to applying UCD tools in creative ways. For one, the

clients’ requirements included (a) designing for a non-

technical, text adverse user population; (b) using an

alternative to a grid layout for displaying content and (c)

producing a minimalist UI (minimal features and steps to

complete tasks). The students’ lack of knowledge about this

population obliged them to seek information from people

outside their peer group. The choice of an alternative layout

obliged them to research options, test design assumptions and

weigh value-effort tradeoffs. The minimalist goal made them

think in terms of good UI design for a “minimum viable

product”, entirely in line with an Agile philosophy and useful

in avoiding feature creep. The project also had two clients

with sometimes conflicting requirements, a common problem

in industry. Here again, students learnt to apply UCD tools to

resolve such conflicts with evidence while the documented

rationale for design decisions was invaluable in mitigating

volatile user requirements.

3.4 CEAB “Design” attributes assessment

 In this section, we describe the assessment of the CEAB

“Design” attribute in the integrated UCD-Agile process in

terms of the three indicators listed in section 2.3 of this paper.

The multi-criteria decision making tools to select candidate UI

design solutions for further development included: i) low and

medium fidelity prototypes of the UI designs for client

feedback before sprint development starts, ii) iterative testing

of UI design decisions with representative users throughout

the project, and iii) user satisfaction forms filled by the clients

to track the teams’ progress (RE: Indicator 1). The results of

usability testing and client feedback were used to derive

candidate UI design solutions for further development (RE:

Indicator 2). UI requirements and design were used by the

teams early in the development process as criteria for

selecting architecture patterns and for guiding the design

solutions. For this purpose teams consulted with instructors,

tutors and usability experts while gaining problem-solving

skills and increasing their learning experience (RE: Indicator

3).

3.5 Agile Retrospective Analysis

Agile teams’ retrospective analysis sessions were held at

the end of the academic term to address the learning outcomes

and to emphasize student-centred learning. Students were

reminded about the prime directive – “regardless of what is

discovered, everyone did the best job they could, given what

they knew at the time” and cultural norms of the retrospective

that clearly outline the agile team values and working

agreements. First, it is about establishing an environment in

which the students can safely expose sensitive topics and

manage meaningful dialogue. Second, it is about openness in

team communication and a common ground for collaboration.

Everyone had a “Voice”. To support the retrospective, the

teams used a known framework among the many available

consisting of the following five parts: 1) Start Doing? 2) Stop

Doing? 3) Keep Doing? 4) Do More of? 5) Do Less of? [10].

This helped students discuss what things went well, what

could have gone better, and how things could be changed to

deliver better. At the end, they captured the retrospective

results and actions to be taken to improve the development

approach for the next project. They were reminded that

lessons learned in this session are not lessons forgotten for the

next work they need to accomplish.

4. Discussion of the Results

 As a positive learning outcome, the development teams

learned to use an agile software development process

integrated with UCD. This new UCD-Agile process allowed

for fast and direct user feedback and continuous integration of

the UI design into the developed product through regularly

scheduled UI design evaluation and acceptance testing

sessions with users and clients. In response to this feedback,

the teams developed better design solutions and continually

added new value to the product through user-requested feature

implementations. The early integration of UCD techniques not

only increased the confidence of the students, but also

improved considerably the clients’ satisfaction with the teams

A, B, C, E, and F’s deliverables, as shown by the customer

satisfaction forms completed by the clients after each sprint

(see Table 3). The declining user satisfaction with team D’s

deliverables was mainly attributed to lower team cohesion.

 However, in contrast to the results in 2014, customer

satisfaction levels in 2013 (indicated in Table 4) were

significantly lower.

Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf.

CEEA15; Paper 113

McMaster University; May 31 – June 3, 2015
– 5 of 6 –

Table 3: Client satisfaction results per sprint (2014)
TEAM SPRINT

1

SPRINT

2

SPRINT

3

SPRINT

4

SPRINT

5

A_2014
75% 70% 80% 85% 100%

B_2014
70% 78% 90% 100% 100%

C_2014
80% 73% 95% 93% 85%

D_2014 80% 65% 75% 78% 65%
E_2014 75% 55% 95% 90% 80%
F_2014 75% 75% 55% 93% 95%

Table 4: Client satisfaction results (2013)

TEAM FINAL DEMOS

A_2013 80%

B_2013 40%

C_2013 80%

D_2013 40%

E_2013 60%

 Hence, the new UCD-Agile process introduced in 2014

resulted in significant customer satisfaction improvement. The

main reason is that the quality of the deliverables in 2014 was

certainly higher than in previous years due to the risk

mitigation of volatile user requirements achieved through the

early integration of UCD in the Agile process. Moreover, the

regular peer review sessions taught the students that well-

structured and well-commented design and code will

eliminate the need for lengthy review by the team and/or

tutors. The review process follows in the spirit of the Agile

methodology, making the entire procedure more efficient and

much easier to inherit and improve later.

The introduction of a small portion of the overall course

grade dedicated to customer satisfaction (10%) has improved

the students’ motivation to communicate and collaborate with

the clients. Separate grades in the categories of UI design,

software architecture and agility of the process showed

significant improvement in student use of UCD tools and in

finding correct software architecture solutions while

improving their agility over the duration of the project.

Over the course of the project, many students realized to

what extent the software industry is comprised of numerous

evolving technologies not taught at school. This has motivated

the teams to start exploring extra languages and components

that may not be seen at school. The students were expected to

be independent and capable of quickly leaning things on their

own, which they appreciated and considered “a lot of fun”.

As general feedback on Agile development, the

retrospective sessions revealed that not all teams correctly

understood the benefits of agile practices or adopted them

properly in their course project. These observations were

supported by results from an online agility assessment survey

[14] completed by all teams, see Table 5. As a learning

outcome, the teams realized the disadvantages of not applying

agile practices properly and hopefully learned from their

mistakes.

Table 5: Teams’ agility assessment results (2014)

TEAM AGILITY ASSESSMENT

A_2014 87.60%

B_2014 84.34%

C_2014 81.45%

D_2014 77.08%

E_2014 70%

F_2014 82.00%

5. Conclusions and Future Work

The goal of this paper was to propose an innovative way of

incorporating both theoretical and practical User Interface (UI)

design in teaching software engineering Agile project courses

that would build solid knowledge and improve the learning

experiences for the undergraduate students taking software

engineering project courses.

Our work was exploratory, raising questions for further

investigation such as: 1) How effective will the UCD-Agile

process presented here be in industrial projects? 2) What types

of projects are best suited for a UCD-Agile approach?, and 3)

How to adapt a UCD-Agile approach to mobile application

development? It is questions like these that motivate our

research and will be tackled in our future work.

References

[1] S.W. Ambler and M. Lines. Disciplined agile delivery: A

practitioner's guide to agile software delivery in the enterprise.

IBM Press, 2012.

[2] D. Amyot and G. Mussbacher. "User requirements notation:

the first ten years, the next ten years." Journal of software 6,

no. 5 (2011): 747-768.

[3] Canadian Engineering Accreditation Board, Engineers Canada.

[Online]. Available:

http://www.engineerscanada.ca/accreditation

[4] M. Detweiler. "Managing UCD within agile projects."

interactions 14, no. 3 (2007): 40-42.

[5] DIS, ISO. "9241-210: 2010." Ergonomics of human system

interaction-Part 210: Human-centred design for interactive

systems.

[6] B. Frank. "Development of processes and criteria for CEAB

graduate attribute assessment." Proceedings of the Canadian

Engineering Education Association (2011).

[7] J. Johnson, and A. Henderson. "Usability of interactive

systems: It will get worse before it gets better." Journal of

Usability Studies 7, no. 3 (2012): 88-93.

Proc. 2015 Canadian Engineering Education Association (CEEA15) Conf.

CEEA15; Paper 113

McMaster University; May 31 – June 3, 2015
– 6 of 6 –

[8] S. McCahan, G. Allen and L. Romkey. "Development of the

graduate attribute quality assurance process at the University of

Toronto." Proceedings of the Canadian Engineering Education

Association (2011).

[9] J. C. Perrenet, P. A. J. Bouhuijs, and J. G. M. M. Smits. "The

suitability of problem-based learning for engineering

education: theory and practice." Teaching in higher education

5, no. 3 (2000): 345-358.

[10] Retrospective Plans [Online]. Available:

http://retrospectivewiki.org/

[11] D. Salah, R.F. Paige, and P. Cairns. "A systematic literature

review for agile development processes and user centered

design integration." In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software

Engineering, p. 5. ACM, 2014.

[12] D. Silva, T. Silva, A. Martin, F. Maurer, and M. S. Silveira.

"User-Centered Design and Agile Methods: A Systematic

Review." In AGILE, pp. 77-86. 2011.

[13] D. Stone, C. Jarrett, M. Woodroffe, and S. Minocha. User

interface design and evaluation. Morgan Kaufmann, 2005.

[14] Survey on Agility: “Are you agile enough?” [Online].

Available: https://docs.google.com/forms/d/1koe_Pds51MUVm-

xGxVcQorh_GCbUBuJssrJXh_O4Efo/viewform?formkey=dC1UMVd

yWjRHT3QxdjV2MDRhTnpkOGc6MQ

